This description is not valid for Model analog interface and
conservative-law systems

Consider a junction between

be a complete and minimal set of Kirchhoff’s equations describing the
be the voltage and current vector, respectively, and:

where the template parameter \(T \) specifies the nature of the domain.

SystemC-WMS class mapping

The channel \(f_{\text{signal}} \) does the real computation of the scattering that
occurs at junctions, and a template base class \(\text{wave_modul}e \) takes care of handling sensitivity lists and port declarations on the user’s behalf.

Implementation of Linear Components

State-space description in wave quantities follows directly from “traditional” description by variable substitution:

- \(R \)
- \(\sqrt{R} \cdot \text{int} \)
- \(\text{state vector} \) contains conservative quantities:
 - \(\text{a} \rightarrow \text{L} \) (magnetic flux), \(\text{b} \rightarrow \text{C} \) (electric charge)

SystemC-WMS home page

http://www.deit.univpm.it/systemc-wms